# act sheet, October 2014

## **UbiQ**Chains

### **ALL 8 NATIVELY-LINKED DI-UBIQUITIN CHAINS**

UbiQ is the original and only manufacturer of all 8 natively-linked di-ubiquitin chains (table 1,figure 1).¹ Ubiquitin chains are built by forming a native isopeptide bond between the C-terminus of one ubiquitin and one of the seven potential lysines (K6, K11, K27, K29, K33, K48, K63) or the N-terminus (linear chain) of the preceding ubiquitin (figure 2). All chain types have been identified in cells and the type of linkage in a ubiquitin chain regulates distinct signals that affect physiological processes.² Therefore access to all these linkages is important in order to elucidate their biological roles and mode of action. UbiQ<sup>Chains</sup> offers a di-ubiquitin explorer panel that makes it possible to test all linkages in a convenient and affordable way.³

Table 1

| UbiQ-code | product                     |
|-----------|-----------------------------|
| UbiQ-013  | K6 linked di-ubiquitin      |
| UbiQ-014  | K11 linked di-ubiquitin     |
| UbiQ-015  | K27 linked di-ubiquitin     |
| UbiQ-016  | K29 linked di-ubiquitin     |
| UbiQ-017  | K33 linked di-ubiquitin     |
| UbiQ-033  | K48 linked di-ubiquitin     |
| UbiQ-034  | K63 linked di-ubiquitin     |
| UbiQ-070  | linear linked di-ubiquitin  |
| UbiQ-L01  | di-ubiquitin explorer panel |

Figure 1

28 kDa

17 kDa

9 kDa

M linear K6 K11 K27 K29 K33 K48 K63



#### **Applications**

UbiQ-Chains reagents can be used as a substrate for proteases that cleave the isopeptide linkage between two ubiquitin protein known as deubiquitylases (DUBs). The reagents can also be used to investigate mechanism of binding and recognition by proteins that contain ubiquitin binding motifs.

- DUB specificity
- immunization
- crystallography

#### **Key features**

- all linkages available
- native isopeptide bond
- native Ub sequence (i.e. no Lys-to-Arg mutations)

#### literature

- 1 El Oualid et al. *Angew Chem Int Ed* **2010**, *49*, 10149.
- Dikic et al. Nature Reviews Molecular Cell Biology **2010**, 10, 659.
- 3 (a) Licchesi et al. Nature Structural & Molecular Biology 2012, 19, 62. (b) Faesen et al. Chemistry & Biology, 2011, 18, 1550.
- for a complete list of references we refer to the product group overview document.

